Микросхема КР1182ПМ1 - фазовый регулятор мощности

Микросхемы КР1182ПМ1 - еще одно решение задачи регулирования мощности высоковольтных мощных нагрузок. Микросхемы можно применять для плавного включения и выключения электрических ламп накаливания и изменения яркости свечения, для управления более мощными полупроводниковыми переключающими приборами, для регулирования частоты вращения электрических двигателей. Приборы изготовлены по эпитаксиальной технологии с изоляцией диэлектриком.

Из особенностей регулятора следует отметить его способность ограничивать мощность в нагрузке при достижении предельно допустимой температуры корпуса прибора.

Регулятор КР1182ПМ1 оформлен в пластмассовом корпусе общеевропейской конструкции POWEP-DIP (12+4). Это шестнадцативыводный корпус (рис. 1) с метрическим шагом выводов, у которого выводы 4, 5 и 12, 13 оставлены свободными. Механически и электрически эти выводы объединены и предназначены для отведения тепла от кристалла. Кроме этих, не использованы также выводы 1, 2, 7, 8. Масса прибора - не более 1,5 г.

На ранних стадиях освоения микросхемы в производстве ее выпускали в бескорпусном варианте и в широкораспространенном европейском корпусе DIP16.

На рис. 2 показана принципиальная схема регулятора и типовая схема его включения. Микросхема состоит из двух тринисторов, собранных каждый по схеме транзисторного аналога тринистора (VT1, VT2 и VT3, VT4) и включенных встречно-параллельно, и узла управления (VT5-VT17). Выход узла управления связан с управляющими выводами тринисторов разделительными диодами VD6, VD7.

Узел управления питается от диодного моста, подключенного по переменному напряжению к сетевым выводам 14, 15 и 10, 11 микросхемы. Конфигурация моста несколько отличается от традиционной (рис. 3). Резисторы R3 и R6 играют роль балластных.

Внешние конденсаторы С1, С2 обеспечивают необходимую задержку включения тринисторов на каждой полуволне сетевого напряжения относительно момента его перехода через "нуль". Эти конденсаторы также не позволяют тринисторам открываться в момент подачи напряжения сети.

Узел управления, в свою очередь, состоит из стабилизированного источника питания на транзисторах VT7-VT9, генератора тока на транзисторах VT11, VT12, который заряжает внешний времязадающий конденсатор C3, преобразователя напряжение-ток на транзисторах VT13-VT15 и "токового зеркала" VT16-VT17. На транзисторе VT10 и резисторах R5, R7 собрано устройство тепловой защиты микросхемы.

На рис. 2 в качестве примера показана схема внешней цепи управления - элементы C3, R1, SB1 - для использования регулятора в устройстве плавного включения и выключения осветительной лампы EL1. Регулятор мощности работает следующим образом. При подаче сетевого напряжения тринисторы VT1, VT2 и VT3, VT4 закрыты. На узел управления от источника питания поступает напряжение питания 6,3 В и он вырабатывает некоторый выходной ток Iвых (ток коллектора транзистора VT17).

Предположим, что в текущий момент на объединенных выводах 14, 15 положительное напряжение сети, а на 10, 11 - отрицательное. Выходным током узла управления микросхемы через диод VD7 будет заряжаться задерживающий конденсатор С2. Через некоторое время напряжение на этом конденсаторе увеличится до уровня, при котором откроется тринистор VT1, VT2.

С этого момента и до конца полупериода через нагрузку - лампу EL1 - будет протекать ток, а выпрямительный мост, питающий узел управления, окажется шунтированным открытым тринистором. Конденсатор С1 остается разряженным.

После смены полярности сетевого напряжения начинается зарядка конденсатора С1 и с такой же задержкой откроется тринистор VT3, VT4. Конденсатор С2 в течение этого полупериода быстро разрядится через резистор R1 и транзистор VT5.

На рис. 4 изображены временные диаграммы напряжения на конденсаторах С1 и С2. Сплошными линиями показаны описанные выше процессы, соответствующие некоторому промежуточному значению выходного тока узла управления. Видно, что открывание тринисторов происходит при напряжении на конденсаторах С1, С2, равном 0,7 В. Форма напряжения на нагрузке показана на рис. 4,г.

Задержка включения тринисторов в секундах относительно начала полупериода равна tзад=0,7С2/Iвых, где 0,7 В - пороговое напряжение открывания тринисторов; С2=С1 - емкость задерживающих конденсаторов (в микрофарадах); Iвых - выходной ток (в микроамперах) узла управления.

Если изменять выходной ток узла управления, будет меняться задержка включения тринисторов в каждом полупериоде сетевого напряжения, а значит, и мощность, выделяющаяся в нагрузке. На рис. 4 это проиллюстрировано жирными штриховыми линиями. При минимальном значении выходного тока Iвых min задержка должна превышать половину периода.

В первые несколько полупериодов после подачи на регулятор (рис. 2) сетевого напряжения разряженный времязадающий конденсатор C3 замыкает выводы 3 и 6 микросхемы подобно проволочной перемычке, поэтому выходной ток Iвых=Iвых min. Однако, поскольку генератор тока на транзисторах VT11, VT12, резисторе R8 и диоде VD8 обеспечивает вытекающий стабильный ток через вывод 6, конденсатор C3 плавно заряжается.

Это приводит к увеличению напряжения на базе транзистора VT14, из-за чего транзистор VT15 начинает открываться. В результате выходной ток узла управления увеличивается, задержка включения тринисторов в каждом последующем полупериоде уменьшается - яркость свечения лампы EL1 плавно увеличивается от нуля до максимума.

Если теперь замкнуть контакты выключателя SB1, конденсатор C3 будет разряжаться через резистор R1, а яркость лампы - убывать до полного погасания. Ток разрядки конденсатора должен быть больше тока его зарядки со стороны вывода 6 микросхемы.

Основные технические характеристики при Токр. ср=25°С

Потребляемый ток, мА, не более, при коммутируемом напряжении 400 В и напряжении управляющего входа (выв. 6)




  • ^